Math, asked by mr2799151, 9 months ago

prove that the tangent drawn at the end of a diameter of circle parallel?​

Answers

Answered by nandi101
0

Step-by-step explanation:

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively. Radius drawn to these tangents will be perpendicular to the tangents. Since alternate interior angles are equal, lines PQ and RS will be parallel.

Hope it will be helpful for you....

Plzzzz mark as brainlist I will follow you...

Attachments:
Answered by hshahi1972
26

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel

Attachments:
Similar questions