Math, asked by ramanyadav, 1 year ago

prove that the tangents drawn at the end's of a diameter of a circle are parallel to each other

Answers

Answered by palaku
4

Here AB is a diameter of the circle with centre O, two tangents PQ and RS drawn at points A and B respectively.

Radius will be perpendicular to these tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = ∠OAS = ∠OBP = ∠OBQ = 90º

Therefore,

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel.






ramanyadav: thnx
palaku: most welcome
ramanyadav: my pleasure
palaku: hmm
ramanyadav: ye.....
Answered by hshahi1972
8

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel

Attachments:
Similar questions