Math, asked by ranioberoi56, 3 months ago

prove that the tangents drawn at the ends of a circle are parallel

Answers

Answered by SHLOKEY
2

Answer:

Step-by-step explanation:

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel.

Answered by ariRongneme
1

Step-by-step explanation:

thank you. happy learning and good luck

Attachments:
Similar questions