Math, asked by Harshad1689, 4 months ago

prove that the tangents drawns at the end of a diameter of a circle are parallel

Answers

Answered by itzsecretagent
4

ʏᴏᴜʀ ᴀɴsᴡᴇʀ ɪs ɪɴ ᴀᴛᴛᴀᴄʜᴍᴇɴᴛ.

ʜᴇʟᴘғᴜʟ ғᴏʀ ᴜ!!

ᴍᴀʀᴋ ᴍᴇ ᴀs ʙʀᴀɪɴʟɪsᴛ!!

Attachments:
Answered by hshahi1972
21

Let AB be a diameter of the circle. Two tangents PQ and RS are drawn at points A and B respectively.

Radius drawn to these tangents will be perpendicular to the tangents.

Thus, OA ⊥ RS and OB ⊥ PQ

∠OAR = 90º

∠OAS = 90º

∠OBP = 90º

∠OBQ = 90º

It can be observed that

∠OAR = ∠OBQ (Alternate interior angles)

∠OAS = ∠OBP (Alternate interior angles)

Since alternate interior angles are equal, lines PQ and RS will be parallel

Attachments:
Similar questions