prove that the tanget at any point of a circle is perpendicular to the radius through the point of contact.?Answer it fast!!!!!!!!
Answers
Step-by-step explanation:
answr
search
What would you like to ask?
10th
Maths
Circles
Tangent to a Circle
Prove that the tangent at a...
MATHS
Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
MEDIUM
Share
Study later
VIDEO EXPLANATION
ANSWER
Referring to the figure:
OA=OC (Radii of circle)
Now OB=OC+BC
∴OB>OC (OC being radius and B any point on tangent)
⇒OA<OB
B is an arbitrary point on the tangent.
Thus, OA is shorter than any other line segment joining O to any
point on tangent.
Shortest distance of a point from a given line is the perpendicular distance from that line.
Hence, the tangent at any point of circle is perpendicular to the radius.
Answer: Referring to the figure:
OA=OC (Radii of circle)
Now OB=OC+BC
∴OB>OC (OC being radius and B any point on tangent)
⇒OA<OB
B is an arbitrary point on the tangent.
Thus, OA is shorter than any other line segment joining O to any
point on tangent.
Shortest distance of a point from a given line is the perpendicular distance from that line.
Hence, the tangent at any point of circle is perpendicular to the radius.
Step-by-step explanation:
mark me as brainlist