Math, asked by engineeramanpandey, 6 months ago

Prove that the theorem cos (x + y) = cos x cos y – sin x sin y.​

Answers

Answered by ItzArchimedes
18

Solution :-

Let's take a unit circle with centre O

Unit circle :- A unit circle means a circle with radius one unit .

Figure 1 :-

\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\end{picture}\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(-13,2){\vector(0,3){5.5cm}}\put(-26,15){\vector(3,0){5.3cm}}\put(-13,14.5){\line(-1,5){4.1mm}}\put(-16,25.6){$\sf P_1$}\put(-2.8,13.1){$\sf P_4 (1,0)$}\put(-23,28){\sf (cosx,sinx)}\qbezier(-11,15)(-11,17)(-13,17)\put(-12.7,17){\vector(-3,-1){2mm}}\put(-11.3,17){$\sf x^\circ$}\put(-12.9,15.2){\line(-2,-3){1.12cm}}\put(-20,5){$\sf P_2$}\put(-12.9,15.2){\line(-1,-5){4mm}}\put(-15.7,3.4){$\sf P_3$}\put(-12.3,13.3){$\sf O$}\put(-37,5){$\sf \Big[cos(x+y),sin(x+y)\Big]$}\put(-30,2){$\sf \Big[cos(-y),sin(-y)\Big]$}\qbezier(-13.67,17.5)(-16,15.5)(-14.4,13)\put(-14.7,13.5){\vector(1,-2){1mm}}\put(-16.2,16){$\sf y^\circ$}\qbezier(-12.9,12.3)(-10,11)(-10.3,15)\put(-12.6,12.15){\vector(-3,0){1mm}}\put(-10.2,12.5){$\sf -y^\circ $}\put(-13.4,30.4){\sf y}\put(-1,15.5){\sf x}\end{picture}

Choosing point ( \sf P_1 ) in quadrant 2 . Assuming the angle made by radius \sf OP_1 with positive direction of x - axis as x°

Now , choose another point \sf P_2 in 3rd quadrant such that angle made by radius \sf OP_2 with radius \sf OP_1 as y°.

Let's assume another point \sf P_3 again in 3rd quadrant , the angle made by radius \sf OP_3 with positive direction of x-axis is y° but angle goes in clock - wise direction from positive direction of x - axis . So, it will be -y°

Assuming the point of intersection of unit circle with positive x - axis as \sf P_4

Now writing total information ,

\sf \angle P_4OP_2=x+y \begin{cases}\sf\angle P_4OP_1=x\\\\ \sf\angle P_1OP_2=y \end{cases}\\\\\sf \angle P_4OP_3 =-y

Finding co - ordinates of each point :-

Co-ordinates of \sf P_1 would be , its x co-ordinate , radius of this circle times cosine of ∠x .

So , co-ordinates of \sf P_1 will be \sf ( cosx,sinx)

So , similarly for all the points

  • \sf P_2⇒ [ cos(x+y),sin(x+y) ]
  • \sf P_3⇒ [ cos(-y),sin(-y) ]
  • \sf P_4⇒ ( 1 , 0 )

Let consider two triangles \sf P_1OP_3 \& P_2OP_4 from fig 1.

Now , drawing fig. 2

Figure 2 :-

\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\end{picture}\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(-13,2){\vector(0,3){5.5cm}}\put(-26,15){\vector(3,0){5.3cm}}\put(-13,14.5){\line(-1,5){4.1mm}}\put(-16,25.6){$\sf P_1$}\put(-2.8,13.1){$\sf P_4 (1,0)$}\put(-23,28){\sf (cosx,sinx)}\qbezier(-11,15)(-11,17)(-13,17)\put(-12.7,17){\vector(-3,-1){2mm}}\put(-11.3,17){$\sf x^\circ$}\put(-12.9,15.2){\line(-2,-3){1.12cm}}\put(-20,5){$\sf P_2$}\put(-12.9,15.2){\line(-1,-5){4mm}}\put(-15.7,3.4){$\sf P_3$}\put(-12.3,13.3){$\sf O$}\put(-37,5){$\sf \Big[cos(x+y),sin(x+y)\Big]$}\put(-30,2){$\sf \Big[cos(-y),sin(-y)\Big]$}\qbezier(-13.67,17.5)(-16,15.5)(-14.4,13)\put(-14.7,13.5){\vector(1,-2){1mm}}\put(-16.2,16){$\sf y^\circ$}\qbezier(-12.9,12.3)(-10,11)(-10.3,15)\put(-12.6,12.15){\vector(-3,0){1mm}}\put(-10.2,12.5){$\sf -y^\circ $}\put(-13.4,30.4){\sf y}\put(-1,15.5){\sf x}\qbezier(-18.27,6.8)(-10,10.8)(-3,15)\qbezier(-18.8,6.8)(-19,5)(-15.1,24.7)\end{picture}

Now by observing the given figure

\sf \because Both \;have \;same \;radii\begin{cases}\sf OP_1 = OP_2 = 1\\\\\sf OP_3 = OP_4 = 1\end{cases}

Here , we have an angle \theta , we can see that \sf\angle P_1 OP_3 = y+\theta = \angle P_2OP_4

Now here sides & one angle of two triangles are equal . So , by SAS congruency , the both triangles are congruent .

• ∆\sf P_1OP_3 \cong \sf P_2OP_4

So here the corresponding sides are equal Now taking longest side of congruent triangles \to \sf P_1P_3 = P_2P_4

Now using distance formula\displaystyle\to\sf \sqrt{[cosx-cos(-y)]^2+[sinx-sin(-y)]^2}=\sqrt{[cos(x+y)-1]^2+[sin(x+y)-0]^2}

On squaring on both sides we have ,

The answer will be continued by @HelperToAll

Answered by HelperToAll
17

Solution: Continuity of @ItzArchimedes' answer...

\to ( cosx - cosy )² + ( sinx + siny )² = [ cos ( x + y ) - 1 ]² + [ sin( x + y ) ]²

\to cos²x + cos²y - 2cosxcosy + sin²x + sin²y + 2sinxsiny = cos²(x + y) - 2cos(x + y) + 1 + sin²( x + y )

\to 2 + [ - 2cosxcosy ] + 2sinxsiny = 2 - 2cos(x + y)

\to cos ( x + y ) = cosxcosy - sinxsiny

Hence, proved.

Similar questions