Math, asked by lowermmark, 9 months ago

prove that the trigonometry identities whole root sec²∅+cosec²∅ = tan∅+cot∅​

Answers

Answered by madanesv
1

Step-by-step explanation:

sec^2\alpha  +cosec\alpha ^{2}  =1/cos^2\alpha +1/sec^{2} \alpha\\

Taking LCM

cos^{2} \alpha +sin^{2}\alpha/sin^{2} \alpha cos^2\alpha \\sin^2\alpha+cos^2\alpha=1\\so 1/cos^2\alpha sin^2\alpha\\Taking root\\1/sin\alpha cos\alpha

First equation

sin\alpha/cos\alpha + cos\alpha/sin\alpha\\

Taking LCM

sin^2\alpha+cos^2\alpha/sin\alpha cos\alpha\\\\so\\1/sin\alpha+cos\alpha\\

Equation 2

Equation 1 and 2 are equal so proved

Answered by bonzotechgaming
0

Answer:

given that: sec²ø + cosec²ø

TO PROVE: tanø + cotø

sec²ø = 1 + tan²ø

cosec²ø = 1 + cot²ø

So, Now we can write sec²ø + cosec²ø as:

1 + tan²ø + 1 + cot²ø

= 1 + sin²ø/cos² ø + 1 + cos²ø/sin²ø

= 2 + sin²ø/cos²ø + cos²ø/sin²ø

= 2 + sin²ø

Similar questions