Math, asked by shivambishal192, 4 days ago

prove that the value of
 log_{10}(3)
lies between 1/3 and 1/2​

Answers

Answered by user0888
15

\large\text{$\boxed{\bold{[Topic:\ Logarithms]}}$}

It is a basic query that requires properties of logarithms.

Let us prove what we need.

\large\text{$\boxed{\bold{[Step\ 1.]}}$}

We have two equations that state the same meaning.

\large\text{$\cdots\longrightarrow\boxed{a^{x}=b\iff x=\log_{a}{b}.}$}

If we take logarithm on the left equation, -

\large\text{$\cdots\longrightarrow x\log{a}=\log{b}$}

\large\text{$\cdots\longrightarrow x=\dfrac{\log{b}}{\log{a}}.$}

We proved it.

\large\text{$\cdots\longrightarrow\boxed{\log_{a}{b}=\dfrac{\log{b}}{\log{a}}}$}

\large\text{$\boxed{\bold{[Step\ 2.]}}$}

Then, -

\large\text{$\cdots\longrightarrow\log_{10}3=\dfrac{1}{\log_{3}{10}}.$}

Let's move on.

\large\text{$\cdots\longrightarrow\dfrac{1}{\log_{3}{27}}<\dfrac{1}{\log_{3}{10}}<\dfrac{1}{\log_{3}9}.$}

\large\text{$\cdots\longrightarrow\dfrac{1}{3}<\dfrac{1}{\log_{3}{10}}<\dfrac{1}{2}.$}

Finally, -

\large\text{$\cdots\longrightarrow\dfrac{1}{3}<\log_{10}{3}<\dfrac{1}{2}.$}

Similar questions