Math, asked by navikshreekannan1978, 2 months ago

Prove that the vector f(r)r vector is
always irrotational

Answers

Answered by pulakmath007
17

SOLUTION

TO PROVE

The vector  f(r) \vec{r} is always irrotational if f(r) is differentiable

CONCEPT TO BE IMPLEMENTED

A vector  \vec{v} is called irrational if

 curl  \: \vec{v} =  \nabla \times  \vec{v} = 0

PROOF

Here

 \nabla \times ( \vec{r}f(r))

  =  \nabla \times  \bigg( xf(r) \hat{i} +  yf(r) \hat{j} +zf(r) \hat{k}  \bigg)

 = \displaystyle\begin{vmatrix}  \hat{i} & \hat{j} & \hat{k}\\  \\  \frac{ \partial}{ \partial x}  & \frac{ \partial}{ \partial y} &  \frac{ \partial}{ \partial z} \\ \\  xf(r) & yf(r) &  zf(r) \end{vmatrix}

 = \displaystyle \hat{i}  \bigg(z\frac{ \partial f}{ \partial y}  -y\frac{ \partial f}{ \partial z}  \bigg) + \hat{j}  \bigg(x\frac{ \partial f}{ \partial z}  -z\frac{ \partial f}{ \partial x}  \bigg) + \hat{k}  \bigg(y\frac{ \partial f}{ \partial x}  -x\frac{ \partial f}{ \partial y}  \bigg)

Now

  \displaystyle \frac{ \partial f}{ \partial x}

 = \displaystyle  \bigg(\frac{ \partial f}{ \partial r}   \bigg) \bigg(\frac{ \partial r}{ \partial x}  \bigg)

 = \displaystyle  \frac{ \partial f}{ \partial r}    \bigg(\frac{ \partial   }{ \partial x}   \sqrt{ {x}^{2} +  {y}^{2}  +  {z}^{2}  } \bigg)

 = \displaystyle  \frac{ x f'(r)}{\sqrt{ {x}^{2} +  {y}^{2}  +  {z}^{2} }}

 = \displaystyle  \frac{ x f'(r)}{r }

Thus

  \displaystyle \frac{ \partial f}{ \partial x}  = \displaystyle  \frac{ x f'(r)}{r }

  \displaystyle \frac{ \partial f}{ \partial y}  = \displaystyle  \frac{ y f'(r)}{r }

  \displaystyle \frac{ \partial f}{ \partial z}  = \displaystyle  \frac{ z f'(r)}{r }

Therefore

 \nabla \times ( \vec{r}f(r))

 = \displaystyle \hat{i}  \bigg(z\frac{ y f'(r)}{r }    -y\frac{ z f'(r)}{r }  \bigg) + \hat{j}  \bigg(x\frac{ z f'(r)}{r }    -z\frac{ x f'(r)}{r }  \bigg)+ \hat{k}  \bigg(y\frac{ x f'(r)}{r }    -x\frac{ y f'(r)}{r }  \bigg)

 =  \hat{ 0 }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

Similar questions