Math, asked by Anonymous, 2 months ago

prove that the vertices of a(-2, 3), b(4, 3), c(4, -1) and d(-2, 1) form a rectangle​

Answers

Answered by prachisharma062006
2

Answer:

In a rectangle opposite sides are equal

Since,

The opposite sides are equal in this figure

Therefore,

ABCD is a rectangle

Attachments:
Answered by Anonymous
6

Answer:

Solution:

\mathsf{AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{AB=\sqrt{(-2-4)^2+(3-3)^2}}

\mathsf{AB=\sqrt{(-6)^2+(0)^2}}

\mathsf{AB=\sqrt{36}}

\implies\boxed{\mathsf{AB=6}}

\mathsf{BC=\sqrt{(4-4)^2+(3+1)^2}}

\mathsf{BC=\sqrt{(0)^2+(4)^2}}

\mathsf{BC=\sqrt{16}}

\implies\boxed{\mathsf{BC=4}}

\mathsf{CD=\sqrt{(4+2)^2+(-1+1)^2}}

\mathsf{CD=\sqrt{6^2+(0)^2}}

\mathsf{CD=\sqrt{36}}

\implies\boxed{\mathsf{CD=6}}

\mathsf{AD=\sqrt{(-2+2)^2+(3+1)^2}}

\mathsf{AD=\sqrt{(0)^2+(4)^2}}

\mathsf{AD=\sqrt{16}}

\implies\boxed{\mathsf{AD=4}}

\mathsf{AB=CD\;\;\;and\;\;BC=AD}

\implies\textsf{Opposite sides are equal}

\mathsf{AC=\sqrt{(-2-4)^2+(3+1)^2}}

\mathsf{AC=\sqrt{(-6)^2+4^2}}

\mathsf{AC=\sqrt{36+16}}

\mathsf{AC=\sqrt{5}}

\mathsf{Now,}

\mathsf{AB^2+BC^2}

\mathsf{=36+16}

\mathsf{=52}

\mathsf{=AC^2}

\implies\mathsf{\angle{B}=90^\circ}

\textsf{Hence ABCD is a rectangle}

hope it helps ✔︎✔️

Similar questions