Math, asked by loluanjanerj, 1 year ago

Prove that there is no term involving x^5 int he expansion of (2x^2-3/x)^11

Answers

Answered by MaheswariS
3

\text{Consider,}

(2x^2-\frac{3}{x})^{11}

\textbf{Concept:}

\textbf{The general term in the expansion of $(a+b)^n$ is}

\bf\;T_{r+1}=^nC_r\;a^{n-r}\;b^r

T_{r+1}=^{11}C_r\;(2x^2)^{11-r}\;(-\frac{3}{x})^r

T_{r+1}=^{11}C_r\;2^{11-r}x^{22-2r}\;(\frac{(-3)^r}{x^r})

T_{r+1}=^{11}C_r\;2^{11-r}x^{22-3r}\;(-3)^r

T_{r+1}=^{11}C_r\;2^{11-r}\;(-3)^r\,x^{22-3r}

\text{Let $T_{r+1}$ be the term containing $x^5$}

\implies\,22-3r=5

\implies\,3r=17

\implies\,r=\frac{17}{3}\text{ is not an integer}

\text{Hence, there is no term containing $x^5$}

Similar questions