Math, asked by ishtyak1634, 8 hours ago

Prove that this perpendicular is half the perpendicular side of the largest angle

Answers

Answered by ashutoshkarale29
0

Answer:solution=

Given :

Here, ABC is a right-angled triangle.

∠B=90  

o

 and BD⊥AC                            

To prove :

(i) △ADB∼△BDC

(ii) △ADB∼△ABC

(iii) △BDC∼△ABC

(iv) BD  

2

=AD×DC

(v) AB  

2

=AD×AC

(vi) BC  

2

=CD×AC

Step-by-step explanation:proof=

(i)

⇒  ∠ABD+∠DBC=90  

o

 

⇒  Also, ∠C+∠DBC+∠BDC=180  

o

 

⇒  ∠C+∠DBC+90  

o

=180  

o

 

⇒  ∠C+∠DBC=90  

o

 

But, ∠ABD+∠DBC=90  

o

 

∴  ∠ABD+∠DBC=∠C+∠DBC

⇒  ∠ABD=∠C                      ----- ( 1 )

Thus, in △ADB and △BDC,  

⇒  ∠ABD=∠C                     [ From ( 1 ) ]

⇒  ∠ADB=∠BDC             [ Each angle is 90  

O

 ]

∴  △ADB∼△BDC         [ By AA similarity theorem ]

(ii)

In △ADB and △ABC

⇒  ∠ADB=∠ABC                [ Each angle  90  

o

 ]

⇒  ∠A=∠A                         [ Common angle ]

∴  △ADB∼△ABC          [ By AA similarity theorem ]

(iii)

In △BDC and △ABC,

⇒  ∠BDC=∠ABC                 [ Each angle is 90  

o

 ]

⇒  ∠C=∠C                            [ Common angle ]

∴  △BDC∼△ABC              [ By AA similarity theorem ]

(iv)

From (i) we have,

△ADB∼△BDC

⇒    

BD

AD

=  

DC

BD

         [ C.P.C.T ]

⇒  BD  

2

=AD×DC

(v)

From (ii) we have,

△ADB∼△ABC  

⇒    

AB

AD

=  

AC

AB

                 [ C.P.C.T. ]

∴  AB  

2

=AD×AC

(vi)

From (iii) we have,

△BDC∼△ABC

⇒    

AC

BC

=  

BC

DC

               [ C.P.C.T. ]

∴   BC  

2

=CD×AC

Similar questions