Math, asked by sonusharma45, 6 months ago

prove that this question mate ​

Attachments:

Answers

Answered by tennetiraj86
0

Answer:

answer for the given problem is given

Attachments:
Answered by Flaunt
34

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Given :

tan \theta  + sin \theta  = m

tan \theta  - sin \theta  = n

To prove :

 { {(m}^{2}  -  {n}^{2}) }^{2}  = 16mn

Taking L.H.S:-

Note :-[We take Alpha

instead of theta ]

 {m}^{2}  -  {n}^{2}  = (tan \alpha  + sin \alpha  + tan \alpha   - sin \alpha )(tan \alpha  + sin \alpha  - tan \alpha  + sin \alpha )

 =  >  {m}^{2}  -  {n}^{2}  = (2tan \alpha )(2sin \alpha )

 =  >  {m}^{2}  -  {n}^{2}  = 4tan \alpha sin \alpha

 \bold{{ {(m}^{2} -  {n}^{2} ) }^{2}  = 16 {tan}^{2}  \alpha  {sin}^{2}  \alpha ....L.H.S}

R.H.S=16mn

 =  > 16(tan \alpha  + sin \alpha )(tan \alpha  - sin \alpha )

 =  > 16( {tan}^{2}  \alpha  -  {sin}^{2}  \alpha )

 =  > 16[\frac{ {sin}^{2}  \alpha }{ {cos}^{2}  \alpha }  -  {sin}^{2}  \alpha ]

 =  > 16[\frac{ {sin}^{2}  \alpha  -  {sin}^{2} \alpha  {cos}^{2}  \alpha  }{ {cos}^{2}  \alpha } ]

 =  > 16[ \frac{ {sin}^{2}  \alpha (1 -  {cos }^{2}  \alpha )}{ {cos}^{2} \alpha  } ]

\bold{\orange{\boxed{ {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1}}}

 =  > 16[ \frac{ {sin}^{2}  \alpha  \times  {sin}^{2}  \alpha }{ {cos}^{2} \alpha  } ]

 =  > 16[ \frac{ {sin}^{2} \alpha  }{ {cos}^{2}  \alpha }  \times  {sin}^{2}  \alpha ]

\bold{ =  > 16 {tan}^{2}  \alpha  {sin}^{2}  \alpha}

∴L.H.S=R.H.S

Similar questions