prove that, u1/u2 = v2/v1 = sin i / sin r
Answers
Answered by
2
sin i /sin r = refractive index
refractive index = c/v
refractive index in med.1 = c/v1=u1
refractive index in med.2 = c/v2=u2
u1/u2 =v1/v2= sin i/sin r
refractive index = c/v
refractive index in med.1 = c/v1=u1
refractive index in med.2 = c/v2=u2
u1/u2 =v1/v2= sin i/sin r
Answered by
1
], (u0, vo) e R* and e > 0, there exists 6 = 0 such that it – to < 6, u1 – uo & 6, u2 € u1, u1 + 6 sin(T=#), |vi - vo! < 6, v2 – voi < 6 => f(t, u2 ...
Similar questions