Prove that
under root 1+ cos theta /
1-cos theta
=cosec theta
+cot theta
Answers
Answered by
0
Answer:
To prove: \sqrt{\frac{1+cos{\theta}}{1-cos{\theta}}}=cosec{\theta}+cot{\theta}
1−cosθ
1+cosθ
=cosecθ+cotθ
Taking the LHS of the above equation,
\sqrt{\frac{1+cos{\theta}}{1-cos{\theta}}}=\sqrt{\frac{1+cos{\theta}}{1-cos{\theta}}{\times} \frac{1+cos{\theta}}{1+cos{\theta}}}
1−cosθ
1+cosθ
=
1−cosθ
1+cosθ
×
1+cosθ
1+cosθ
=\sqrt{\frac{(1+cos{\theta})^{2}}{1-cos^{2}{\theta}}}
1−cos
2
θ
(1+cosθ)
2
=\sqrt{\frac{(1+cos{\theta})^{2}}{sin^{2}{\theta}}}
sin
2
θ
(1+cosθ)
2
=\frac{1+cos{\theta}}{sin{\theta}}
sinθ
1+cosθ
=cosec{\theta}+cot{\theta}cosecθ+cotθ =RHS
Hence proved.
Similar questions
English,
3 months ago
English,
3 months ago
Political Science,
10 months ago
Chemistry,
10 months ago