Math, asked by Akshai14311, 11 months ago

Prove that under root 1-CosA/1+CosA = CosecA -CotA

Answers

Answered by kingofkings8990
1

Step-by-step explanation:

 \sqrt{ \frac{1 +  \cos( \alpha ) }{1 -  \cos( \alpha ) } }  \\  =  \sqrt{ \frac{1 +  { \cos( \alpha ) }^{2}  + 2 \cos( \alpha ) }{ 1 -  { \cos( \alpha ) }^{2} }  }  multiplying \: by \:  \sqrt{1  -   \cos( \alpha ) up \: and \: down}  \\   = \sqrt{ \frac{ {(1 +  \cos( \alpha ) }^{2}  }{ { \sin( \alpha ) }^{2} } }  \\  =  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  \\  =  \csc( \alpha )  +  \cot( \alpha )

Answered by Raalnewtes01
3

Answer:

This is how to solve it...

Attachments:
Similar questions