Math, asked by sapnasonirpbxoxq, 10 months ago

prove that under root 1 minus sin theta upon 1 + sin theta is equals to sec theta + tan theta​

Answers

Answered by Anonymous
109

Correct Question :

To Prove  \sf{ \dfrac{ \sqrt{1  +   \sin \theta } }{ \sqrt{1  - \sin \theta } } =  \sec \theta +  \tan \theta  }

AnswEr :

To Prove :

 \sf{ \dfrac{ \sqrt{1  +   \sin \theta } }{ \sqrt{1  - \sin \theta } } =  \sec \theta +  \tan \theta  }

Proof :

 \longrightarrow\sf{ \dfrac{ \sqrt{1+ \sin \theta } }{ \sqrt{1  - \sin \theta } }}

  • Rationalizing this

 \longrightarrow\sf{ \dfrac{ \sqrt{1  +  \sin \theta } }{ \sqrt{1  - \sin \theta } } \times  \dfrac{\sqrt{1  +   \sin \theta } }{ \sqrt{1  + \sin \theta } }}

 \longrightarrow\sf{ \dfrac{ (\sqrt{1+ \sin \theta }) ^{2} }{ \sqrt{1  - \sin^{2}  \theta } }}

 \longrightarrow\sf{ \dfrac{1 +  \sin \theta}{ \sqrt{ \cos^{2} \theta  } } }

 \longrightarrow\sf{ \dfrac{1 +  \sin \theta}{ \cos \theta }}

 \longrightarrow\sf{  \dfrac{1}{\cos \theta} +  \dfrac{\sin \theta}{ \cos \theta }}

 \longrightarrow\sf{ \sec \theta +  \tan \theta  }

Similar questions