Math, asked by krishnakalla07, 1 year ago

Prove that under root 1+sin upon 1-sin + under root 1-sin upon 1+sin = 2sec

Answers

Answered by Anonymous
2

Hlew,

Here's your answer...

Your answer is in the following attachement.

Thanks.

Sorry baby 'wink'

Attachments:
Answered by Bianchi
2

Answer:

lhs  \\ =  \sqrt  \frac{ 1+  \sin  }{1 -  \sin} +  \sqrt  \frac{ 1 -   \sin  }{1  +  \sin}  \\ =  \sqrt \frac{(1 +  \sin)(1 +  \sin) }{(1 -  \sin)(1 +  \sin) }  + \sqrt \frac{(1  -  \sin)(1  -   \sin) }{(1  +  \sin)(1  -   \sin) } \\  =  \sqrt \frac{ {(1 +  \sin) }^{2} }{1 -  { \sin }^{2} }  + \sqrt \frac{ {(1  -   \sin) }^{2} }{1 -  { \sin }^{2} } \\  =    \sqrt \frac{ {(1 +  \sin) }^{2} }{ {  \cos  }^{2} } +\sqrt \frac{ {(1  -   \sin) }^{2} }{ {  \cos  }^{2} }\\  =  \frac{1 +  \sin }{ \cos} +  \frac{1 -   \sin }{ \cos}\\  =  \frac{1}{ \cos }  +  \frac{ \sin }{ \cos } + \frac{1}{ \cos }   -   \frac{ \sin }{ \cos } \\  =   \frac{2}{ \cos}  \\  = 2 \sec \\  = rhs

Hence, proved

Similar questions