Math, asked by vashishtsandeep, 1 year ago

Prove that under root 10 is irrational number

Answers

Answered by LuckyYadav2578
12
let /10 be rational number

/10 = a/b { a and b are integer and co - prime }

b/10 = a

squaring both side

10b^2 = a^2

/10 is divisible by a^2

/10 is also divisible by a

now let a =10c

10b^2 = 100c^2

10c^2 = b^2

/10 is divisible by b^2

/10 is also divisible by b

=>it is contradiction because /10 is co-prime and it is divisible by a , a^2 , b , b^2.

Therefore /10 is irrational




[/10= root 10
if any problem in understanding then u can ask me in comment ]

....hope it will help u
Answered by unnatidubey136
1

Answer:

Hey Mate

Step-by-step explanation:

Here is your answer-⬆

Hope it help you

Thank you

Attachments:
Similar questions