Math, asked by sharibziyausmani, 2 months ago

prove that under root 2+under root 5 is a irrational.​

Answers

Answered by sairama3
1

Step-by-step explanation:

if u want √2 and √5 to prove use contradiction method.

Answered by ItzAshi
49

Step-by-step explanation:

{\large{\mathfrak{\underline{\pink{Question :-}}}}} \\

Prove that (√2 + √5 ) is irrational number

{\large{\mathfrak{\underline{\pink{Answer :-}}}}}

Given :

  • √2+√5

To prove :

  • √2+√5 is an irrational number.

Proof :

Let's us assume that √2+√5 is a rational number.

As we know,

➠ A rational number can be written in the form of p/q where p,q are integers and q≠0

Therefore

{\bold{\sf{⟼ \:  \:  \:  \:  \: √2 \: + \: √5  \: =  \: \frac{p}{q}}}} \\

On squaring both sides we get,

{\bold{\sf{⟼ \:  \:  \:  \:  \: (√2 \: + \: √5)²  \: = \:  (\frac{p}{q})²}}}

{\bold{\sf{⟼ \:  \:  \:  \:  \: √2² \: + \: √5² \: + \: 2(√5)(√2) \:  = \:  \frac{p²}{q²}}}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: 2 \: + \: 5 \: + \: 2√10  \: = \:  \frac{p²}{q²}}}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: 7 \: + \: 2√10 \:  =  \: \frac{p²}{q²}}}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \: 2√10 \:  =  \: \frac{p²}{q²}  \: – \:  7}}} \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \: √10  \: = \:  \frac{(p² \: - \: 7q²)}{2q}}}} \\

 \\ {\bold{\sf{\underline{⟼ \:  \:  \:  \:  \: p, \: q  \: are \:  integers  \: then  \: \frac{(p²-7q²)}{2q}  \: is \:  a  \: rational  \: number.}}}} \\

Then √10 is also a rational number.

But this contradicts the fact that √10 is an irrational number.

Our assumption is incorrect

√2+√5 is an irrational number.

{\large{\mathfrak{\fbox{\orange{Hence \:   proved}}}}}

Similar questions