prove that under root 5 is a fractional number.
Answers
Step-by-step explanation:
Let us assume that √5 is a rational number.
So it can be expressed in the form p/q where p,q are co-prime integers and q≠0
⇒ √5 = p/q
On squaring both the sides we get,
⇒5 = p²/q²
⇒5q² = p² —————–(i)
p²/5 = q²
So 5 divides p
p is a multiple of 5
⇒ p = 5m
⇒ p² = 25m² ————-(ii)
From equations (i) and (ii), we get,
5q² = 25m²
⇒ q² = 5m²
⇒ q² is a multiple of 5
⇒ q is a multiple of 5
Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number
√5 is an irrational number
Answer:
Let's us solve this
GIVEN:-
√5=2.2360679775
(in decimals)
so let's make it into fraction
Process with example:-
Decimals can be written in fraction form. To convert a decimal to a fraction, place the decimal number over its place value. For example, in 0.6, the six is in the tenths place, so we place 6 over 10 to create the equivalent fraction, 6/10.
Answer:-
So this is in 10000000000 place(1000 crore)
So,the answer is 22360679775/10000000000