Math, asked by palsamrachana, 7 months ago

prove that under root cosec A+1÷Cosec A-1 - under root cosecA -1÷Cosec A+1 =2 cot A

Answers

Answered by SachinGupta01
6

Correct question:

 \\   \sf \implies  \boxed{ \sf\sqrt{ \dfrac{ cosec  \: A + 1}{cosec   \: A -  1} }  - \sqrt{ \dfrac{ cosec \:   A - 1}{cosec  \:  A  +   1} } = 2 \tan  A }

Solving LHS,

 \\   \sf \implies  { \sf\sqrt{ \dfrac{ cosec  \: A + 1}{cosec   \: A -  1}  \times \dfrac{ cosec  \: A + 1}{cosec   \: A  +   1} }  - \sqrt{ \dfrac{ cosec  \: A  -  1}{cosec   \: A  +  1}  \times \dfrac{ cosec  \: A  -  1}{cosec   \: A   -    1} }}

 \\   \sf \implies  { \sf\sqrt{ \dfrac{ (cosec  \: A + 1) ^{2} }{cosec   ^{2} \: A -  1}  } - \sf\sqrt{ \dfrac{ (cosec  \: A  -  1) ^{2} }{cosec   ^{2} \: A -  1}  }}

 \\   \sf \implies  { \sf\sqrt{ \dfrac{ (cosec  \: A + 1) ^{2} }{ \cot ^{2} A }  } - \sf\sqrt{ \dfrac{ (cosec  \: A  -  1) ^{2} }{\cot ^{2} A}  }}

 \\   \sf \implies  { \sf{ \dfrac{ (cosec  \: A + 1)  }{ \cot  A }  } - \sf{ \dfrac{ (cosec  \: A  -  1)  }{\cot  A}  }}

 \\   \sf \implies  { \sf{ \dfrac{ (cosec  \: A + 1)  - (cosec  \: A  -  1) }{ \cot  A }  } }

 \\   \sf \implies  { \sf{ \dfrac{ cosec  \: A + 1  - cosec  \: A   +  1 }{ \cot  A }  } }

 \\   \sf \implies  { \sf{ \dfrac{ 2 }{ \cot  A }  } }

 \\   \sf \implies \boxed{ {\sf 2 \tan  A}}

  • LHS = RHS

HENCE PROVED

Attachments:
Similar questions