Math, asked by ImSpammerXD, 7 months ago

Prove that

underoot3 cosec 20° – sec 20º = 4.


Need full explanation.​

Answers

Answered by Anonymous
90

 \mathfrak{\huge{\red{\underline{\underline{QUESTION:-}}}}}

Prove that   \sqrt{3} \: cosec \: {20}^{\circ} - sec \: 20^{\circ} = 4

 \mathfrak{\huge{\green{\underline{\underline {SOLUTION:-}}}}}

Solving LHS,

 \implies \dfrac{\sqrt{3}}{sin \: {20}^{\circ}}- \dfrac{1}{cos \: 20^{\circ}}

 \implies \dfrac{\sqrt{3}\:cos\: 20^{\circ} - sin \: 20^{\circ}}{sin\: 20^{\circ}. cos\: 20^{\circ}}

Dividing numerator and denominator by 2

 \implies \dfrac {\dfrac{\sqrt{3}}{2} \: cos \: 20^{\circ} - \dfrac{1}{2} \: sin \: 20^{\circ}}{\dfrac{sin\:20^{\circ} \: cos \: 20^{\circ}}{2}}

Replacing the values√3/2 and 1/2 with sin 60° and cos 60°

 \implies \dfrac{sin \: 60^{\circ} \: cos \: 20^{\circ} - cos \: 60^{\circ}\: sin \: 20^{\circ}}{\dfrac{sin\:20^{\circ} \: cos \: 20^{\circ}}{2}}

Using Identity sin (A - B) = sin A cos B - cos A sin B

 \implies \dfrac{sin \: (60^{\circ} -  20^{\circ})} {\dfrac{1}{2} \:sin\:20^{\circ} \: cos \: 20^{\circ}}

Multiplying this equation by 2/2

 \implies \dfrac{2}{2} \times 2 \times \dfrac{sin \: (60^{\circ} - 20^{\circ})}{sin\:20^{\circ} \: cos \: 20^{\circ}}

 \implies 4 \times \dfrac{sin \: (60^{\circ} - 20^{\circ})}{2sin\:20^{\circ} \: cos \: 20^{\circ}}

Using identity, sin 2A = 2 sin A cos A

 \implies 4 \times \dfrac{sin\: {40}^{\circ}}{sin\: {40}^{\circ}}

4 = RHS

Hence proved.

Answered by riya15955
3

hope this helps u........

Attachments:
Similar questions