prove that underroot 1+sinA upon 1-sinA=secA+tan A
Answers
Answered by
2
Answer:
LHS = √(1 + sin∅)/√(1 - sin∅)
= √(1 + sin∅) × √(1 + sin∅)/√(1 -sin∅)×√(1 +sin∅)
= √(1 + sin∅)²/√(1 -sin²∅)
= (1 + sin∅)/√cos²∅
= (1 + sin∅)/cos∅
= 1/cos∅ + sin∅/cos∅
= sec∅ + tan∅ = RHS
Step-by-step explanation:
Similar questions