Math, asked by chandu7087, 4 months ago

prove that value LHS=RHS ​

Attachments:

Answers

Answered by vkckrish
0

Answer:

which class is that

Step-by-step explanation:

please mark as brainlest answer

Answered by Anonymous
27

 \large\maltese \:  \:  \:  \sf \underline{ \underline{Question \:  :}}

  • Prove that,

 \begin{array}{ |ccc| }  \bf b + c& \bf a& \bf a \\ \\   \bf b& \bf c + a& \bf b \\ \\   \bf c& \bf c& \bf a + b\end{array} =  \bf 4abc

\large \maltese \:  \:  \:  \sf \underline{ \underline{Solution\:  :}}

 \:  \:  \:  \:  \:  \:  \:  \:  \large \bf \: L \: H \: S

 \longrightarrow \:  \begin{array}{ |ccc| }  \sf  \: b + c& \sf a& \sf a  \\ \\  \sf b& \sf c + a& \sf b \\  \\  \sf c& \sf c& \sf a + b\end{array}

 \longrightarrow \begin{array}{| ccc| } \sf \:  b + c & \sf \: a & \sf \: a \\   \\ \sf  \: b + c & \sf \: a + 2c& \sf \: a + 2b \\  \\ \sf \: c& \sf \: c & \sf \: a + b\end{array} \:  \:  \bf \:   \:  \:  \:  \:  \:  \: \bigg[C_2 + C_3 \bigg]

 \longrightarrow \begin{array}{| ccc| }  \sf \: b + c&  \sf \:a & \sf \: a \\   \\ \sf \: 0& \sf \:2c& \sf \:2b \\  \\   \sf \: c& \sf \: c & \sf \: a + b\end{array}\: \: \: \: \: \: \bf\bigg[C_2 - C_1 \bigg]

 \longrightarrow \sf \:  \bigg(b + c \bigg) \bigg \{(2c)(a + b) - (2b)(c) \bigg \} + 0 + c \bigg(2ab - 2ac \bigg) \\

 \sf \longrightarrow  \bigg(b + c \bigg) \bigg \{ 2ac + \cancel{ 2bc }- \cancel{ 2bc}  \bigg \} + 2abc - 2a {c}^{2}

 \longrightarrow \sf \: 2abc \:  +  \cancel{2a {c}^{2}}  + 2abc - \cancel{ 2a {c}^{2} }

 \longrightarrow  { \underline{\boxed{\bf{4abc}} \:  \: }}_{ \bigstar \star}  \:  \:  \big(\bf  RHS \big)\:  \:  \:  \:  \:  \:  \:  \:  \:   \small{\bf{[ Proved ]}} \\

Similar questions