prove that vertically opposite angle are equal
Answers
Answer:
the statement above, it is given that ‘two lines intersect each other’. So, let AB and CD be two lines intersecting at O as shown in Fig. 6.8. They lead to two pairs of vertically opposite angles, namely,
(i) ∠ AOC and ∠ BOD (ii) ∠ AOD and ∠ BOC.
We need to prove that ∠ AOC = ∠ BOD and ∠ AOD = ∠ BOC.
Now, ray OA stands on line CD.
Therefore, ∠ AOC + ∠ AOD = 180° (Linear pair axiom) ………..(1)
Can we write ∠ AOD + ∠ BOD = 180°? (Linear pair axiom)……………(2)
From (1) and (2), we can write
∠ AOC + ∠ AOD = ∠ AOD + ∠ BOD
This implies that ∠ AOC = ∠ BOD
Similarly, it can be proved that ∠AOD = ∠BOC
hope it helps
plz mark my ans as brainlliest
follow me #arianators.
Step-by-step explanation:
Theorem: In a pair of intersecting lines the vertically opposite angles are equal.
Proof: Consider two lines AB←→ and CD←→ which intersect each other at O. The two pairs of vertical angles are:
i) ∠AOD and ∠COB
ii) ∠AOC and ∠BOD
Vertically opposite angles
It can be seen that ray OA¯¯¯¯¯¯¯¯ stands on the line CD←→ and according to Linear Pair Axiom, if a ray stands on a line, then the adjacent angles form a linear pair of angles.
Therefore, ∠AOD + ∠AOC = 180° —(1) (Linear pair of angles)
Similarly, OC¯¯¯¯¯¯¯¯ stands on the line AB←→.
Therefore, ∠AOC + ∠BOC = 180° —(2) (Linear pair of angles)
From (1) and (2),
∠AOD + ∠AOC = ∠AOC + ∠BOC
⇒ ∠AOD = ∠BOC —(3)
Also, OD¯¯¯¯¯¯¯¯ stands on the line AB←→.
Therefore, ∠AOD + ∠BOD = 180° —(4) (Linear pair of angles)
From (1) and (4),
∠AOD + ∠AOC = ∠AOD + ∠BOD
⇒ ∠AOC = ∠BOD —(5)
Thus, the pair of opposite angles are equal.
Hence, proved.