Math, asked by khushi15686, 18 days ago

Prove that volume of closed cylinder of given total surface area is maximum when height is equals to diameter of base.​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Let assume that

Height of cylinder be h units

Radius of cylinder be r units

S represents the total surface area of cylinder

V represents Volume of cylinder.

We know, Total Surface Area (S) of cylinder of radius r and height h is given by

\rm \: S = 2\pi \: r(h + r)

\rm \: S = 2\pi \: rh + 2\pi \:  {r}^{2}

\rm\implies \:h = \dfrac{S -  {2\pi \: r}^{2} }{2\pi \: r}  -  -  - (1)

Now, we know Volume of cylinder (V) of radius r and height h is given by

\rm \: V = \pi \:  {r}^{2} h

On substituting the value of h from equation (1), we get

\rm \: V = \pi \:  {r}^{2} \bigg(\dfrac{S -  {2\pi \: r}^{2} }{2\pi \: r} \bigg)

\rm \: V =r \bigg(\dfrac{S -  {2\pi \: r}^{2} }{2} \bigg)

\rm \: V =\dfrac{Sr -  {2\pi \: r}^{3} }{2}

On differentiating both sides w. r. t. r, we get

\rm \: \dfrac{d}{dr}V =\dfrac{d}{dr}\dfrac{Sr -  {2\pi \: r}^{3} }{2}

We know,

\boxed{\tt{ \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}} \\

So, using this result, we get

\rm \: \dfrac{dV}{dr} =\dfrac{S -  {6\pi \: r}^{2} }{2} -  -  -  - (2)

For maxima or minima, we substitute

\rm \: \dfrac{dV}{dr} = 0

\rm \: \dfrac{S -  {6\pi \: r}^{2} }{2} = 0

\rm\implies \:S = 6\pi \:  {r}^{2}  -  -  -  - (3)

Now, From equation (2), we have

\rm \: \dfrac{dV}{dr} =\dfrac{S -  {6\pi \: r}^{2} }{2}

On differentiating both sides w. r. t. r, we get

\rm \: \dfrac{ {d}^{2} V}{d {r}^{2} } =\dfrac{d}{dr}\bigg(\dfrac{S -  {6\pi \: r}^{2} }{2}\bigg)

\rm \: \dfrac{ {d}^{2} V}{d {r}^{2} } =\dfrac{0 -  {12\pi \: r}^{} }{2}

\rm\implies \:\rm \: \dfrac{ {d}^{2} V}{d {r}^{2} } = - 6\pi \: r < 0

\rm\implies \:V \: is \: maximum

Now, Substitute the value of S from equation (3) in equation (1), we get

\rm \:  \:h = \dfrac{6\pi \:  {r}^{2}  -  {2\pi \: r}^{2} }{2\pi \: r}

\rm \:  \:h = \dfrac{4\pi \:  {r}^{2}}{2\pi \: r}

\rm\implies \:h = 2r

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Basic Concept Used :-

Let y = f(x) be a given function.

To find the maximum and minimum value, the following steps are follow :

1. Differentiate the given function.

2. For maxima or minima, put f'(x) = 0 and find critical points.

3. Then find the second derivative, i.e. f''(x).

4. Apply the critical points ( evaluated in second step ) in the second derivative.

5. Condition :-

The function f (x) is maximum when f''(x) < 0.

The function f (x) is minimum when f''(x) > 0.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) &amp; \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf k &amp; \sf 0 \\ \\ \sf sinx &amp; \sf cosx \\ \\ \sf cosx &amp; \sf  -  \: sinx \\ \\ \sf tanx &amp; \sf  {sec}^{2}x \\ \\ \sf cotx &amp; \sf  -  {cosec}^{2}x \\ \\ \sf secx &amp; \sf secx \: tanx\\ \\ \sf cosecx &amp; \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  &amp; \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx &amp; \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  &amp; \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by XxitzZBrainlyStarxX
7

Question:-

Prove that volume of closed cylinder of given total surface area is maximum when height is equals to diameter of base.

Given:-

  • A right circular cylinder of given surface and maximum volume.

To Prove:-

  • Height of cylinder is equal to diameter of base.

Solution:-

  • Let, radius of the cylinder = r.

  • Height of the cylinder = h.

Surface area:

{ \boxed{ \sf \large \red{S = 2\pi rh + 2\pi r {}^{2} }}} \:  \:  \: ...(1)

 \sf \large⇒  \frac{S - 2\pi r {}^{2} }{2\pi r}  = h

Volume of cylinder is:

{ \boxed{ \sf \large \red{V = \pi r {}^{2}h }}}

 \sf \large⇒ v = \pi r {}^{2} \bigg ( \frac{S - 2\pi r {}^{2} }{2\pi r}  \bigg)

 \sf \large⇒ V =  \frac{1}{2} [Sr - 2\pi r {}^{3} ]

 \sf \large Now, \frac{dv}{dr}  =  \frac{1}{2} [S - 6\pi r {}^{2} ]

 \sf \large⇒  \frac{d {}^{2}v }{dr {}^{2} }  =  \frac{1}{2} [0 - 12\pi r] =  - 6\pi r

 \sf \large For \frac{maximum}{minimum}

 \sf \large \frac{dv}{dr}  = 0

 \sf \large⇒ S = 6\pi r {}^{2}

From Equation (1)

 \sf \large⇒ 2\pi rh + 2\pi r {}^{2}  = 6\pi r {}^{2}

 \sf \large⇒ r =  \frac{h}{2}

 \sf \large[ \frac{d {}^{2}v }{dr {}^{2} } ]\sf\tt{\displaystyle \sf _{r =  \frac{h}{2} }}  \sf \large=  -  6\pi \times  \frac{h}{2}  =  - 3\pi h

 \sf \large[ \frac{d {}^{2}v }{dr {}^{2} } ]\sf\tt{\displaystyle \sf _{r =  \frac{h}{2} }}  \sf \large&lt; 0 \because - 3\pi h &lt; 0

 \sf \large⇒ volume \: of \: maximum \: at \: r =  \frac{h}{2} .

Answer:-

{ \boxed{ \sf \large \purple{Hence, h = 2r . }}}

Hope you have satisfied.

Similar questions