prove that which is mentioned in the question
pls help it is urgent
Answers
Step-by-step explanation:
Given :-
[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]+
[(Cos^3 θ- Sin^3 θ)/(Cos θ- Sin θ)]
To find:-
Prove that :
[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]+
[(Cos^3 θ- Sin^3 θ)/(Cos θ- Sin θ)] = 2
Solution:-
Given that
On taking LHS :
[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]+
[(Cos^3 θ- Sin^3 θ)/(Cos θ- Sin θ)] -----(1)
[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]
Cos^3 θ+ Sin^3 θ is in the form of a^3+b^3
Where a = Cos θ and b= Sin θ
We know that
a^3+b^3 = (a+b)(a^2-ab+b^2)
Cos^3 θ+ Sin^3 θ
=> (Cos θ+ Sin θ)(Cos^2θ+Sin^2θ-Cos θSinθ)
Now ,
[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]
=> (Cosθ+Sinθ)(Cos^2θ+Sin^2θ-CosθSinθ)/
(Cos θ +Sinθ)
=> Cos^2θ+Sin^2θ-CosθSinθ
we know that
Sin^2 A + Cos^2 A = 1
=> 1- Cos θ Sin θ ----(2)
and
[(Cos^3 θ- Sin^3 θ)/(Cos θ- Sin θ)]
Cos^3 θ- Sin^3 θ is in the form of a^3-b^3
Where a = Cos θ and b= Sin θ
We know that
a^3-b^3 = (a-b)(a^2+ab+b^2)
Cos^3 θ- Sin^3 θ
=> (Cos θ-Sin θ)(Cos^2θ+Sin^2θ+Cos θSinθ)
Now ,
[(Cos^3 θ - Sin^3 θ)/(Cos θ-Sin θ)]
=> (Cosθ-Sinθ)(Cos^2θ+Sin^2θ+CosθSinθ)/
(Cos θ -Sinθ)
=> Cos^2θ+Sin^2θ CosθSinθ
we know that
Sin^2 A + Cos^2 A = 1
=> 1+Cos θ Sin θ ----(3)
From (2) and (3)
(1) can be written as
=>[(Cos^3 θ + Sin^3 θ)/(Cos θ+Sin θ)]+
[(Cos^3 θ- Sin^3 θ)/(Cos θ- Sin θ)]
=> 1+Cos θ Sin θ+ 1-Cos θ Sin θ
=> (1+1)+(Cos θ Sin θ-Cos θ Sin θ)
=> 2+0
=> 2
=> RHS
LHS = RHS
Hence, Proved.
Used formulae:-
- a^3-b^3 = (a-b)(a^2+ab+b^2)
- a^3+b^3 = (a+b)(a^2-ab+b^2)
- Sin^2 A + Cos^2 A = 1