Prove that whole root (1+cos theta)/(1-cos theta)+whole root (1-cos theta)/(1+cos theta)=2 cosec theta
Answers
Answered by
226
√{(1+cosθ)/(1-cosθ)}+√{(1-cosθ)/(1+cosθ)}
=(√1+cosθ×√1+cosθ+√1-cosθ×√1-cosθ)/(√1-cosθ×√1+cosθ)
={√(1+cosθ)²+√(1-cosθ)²}/√(1-cos²θ)
=(1+cosθ+1-cosθ)/√sin²θ
=2/sinθ
=2cosecθ (Proved)
=(√1+cosθ×√1+cosθ+√1-cosθ×√1-cosθ)/(√1-cosθ×√1+cosθ)
={√(1+cosθ)²+√(1-cosθ)²}/√(1-cos²θ)
=(1+cosθ+1-cosθ)/√sin²θ
=2/sinθ
=2cosecθ (Proved)
Answered by
31
I hope it helps you
In the picture rationalization is done and then add it hence fundamental identity is applied
Attachments:
Similar questions
English,
7 months ago
Computer Science,
7 months ago
English,
7 months ago
English,
1 year ago
Hindi,
1 year ago