Prove that:
x^3 + y^3 + ^3 = 3xyz,
if (x + y + z) = 0.
Answers
Answered by
0
Step-by-step explanation:
Given x+y+z=0
⟹x+y=−z
Cubing on both sides
(x+y)
3
=(−z)
3
⟹x
3
+y
3
+3x
2
y+3xy
2
=−z
3
⟹x
3
+y
3
+3xy(x+y)=−z
3
⟹x
3
+y
3
+3xy(−z)=−z
3
⟹x
3
+y
3
−3xyz=−z
3
⟹x
3
+y
3
+z
3
=3xyz
Answered by
0
Similar questions