Math, asked by ma0911gur, 6 hours ago

Prove that:
x^3 + y^3 + ^3 = 3xyz,
if (x + y + z) = 0.

Answers

Answered by prajwalsapkal96
0

Step-by-step explanation:

Given x+y+z=0

⟹x+y=−z

Cubing on both sides

(x+y)

3

=(−z)

3

⟹x

3

+y

3

+3x

2

y+3xy

2

=−z

3

⟹x

3

+y

3

+3xy(x+y)=−z

3

⟹x

3

+y

3

+3xy(−z)=−z

3

⟹x

3

+y

3

−3xyz=−z

3

⟹x

3

+y

3

+z

3

=3xyz

Answered by Shreyanshijaiswal81
0

x + y + z = 0 =  >  x  + y =  - z \\  =  > (x + y)^{3}  = ( - z )^{3}  \\  =  > x^{3}  + y ^{3}  + 3xy \: (x + y) = ( - z) =  -  {z} \\  =  > x^{3}  + y ^{3}  + 3xy ( - z ) =  -  {z}^{3}  \\  =  > x^{3}  + y ^{3}   -  3xyz  = 3xyz

Hence,(x + y + z) = 0  =  > ( {x}^{3}  {y}^{3}  {z}^{ 3} ) = 3xyz

Similar questions