Prove that : x^3+y^3+z^3-3*x*y*z =1/2(x+y+z) (x-y)^2+(y-z)^2+(z-x)^2
Answers
Answered by
1
Heya! here is ya answer
====================================
LHS
x³ + y³ + z³ - 3xyz
= { ( x + y )³ - 3xy ( x + y ) + z³ - 3xyz
= ( x + y + z ) { ( x + y )² - ( x + y )z + z² } - 3xy ( x + y ) - 3xyz
= ( x + y + z ) ( x² + y² + 2xy - xz - yz - z² ) - 3xy ( x + y ) - 3xyz
= ( x + y + z ) { ( x² + y² + z² + 2xy - xz - yz ) - 3xy
= ( x + y + z ) { ( x² + y² + z² - xy - yz - zx ) }
= 1/2 ( x + y + z ) { ( x² + y² - 2xy ) + ( y² + z² - 2yz ) + ( z² + x² - 2zx )
= 1/2 ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )² }
RHS
thanks
if you found any mistakes then please tell me.
====================================
====================================
LHS
x³ + y³ + z³ - 3xyz
= { ( x + y )³ - 3xy ( x + y ) + z³ - 3xyz
= ( x + y + z ) { ( x + y )² - ( x + y )z + z² } - 3xy ( x + y ) - 3xyz
= ( x + y + z ) ( x² + y² + 2xy - xz - yz - z² ) - 3xy ( x + y ) - 3xyz
= ( x + y + z ) { ( x² + y² + z² + 2xy - xz - yz ) - 3xy
= ( x + y + z ) { ( x² + y² + z² - xy - yz - zx ) }
= 1/2 ( x + y + z ) { ( x² + y² - 2xy ) + ( y² + z² - 2yz ) + ( z² + x² - 2zx )
= 1/2 ( x + y + z ) { ( x - y )² + ( y - z )² + ( z - x )² }
RHS
thanks
if you found any mistakes then please tell me.
====================================
Similar questions