Math, asked by sg2007, 8 hours ago

prove that x^3+y^3+z^3-3xyz={(x+,y+z)[(x-y)^2+(y-z)^2+(z-x)^2]}/2..

plz answer fast..it's urgent ​

Answers

Answered by mathdude500
3

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:  \: {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz

\rm =  \: \dfrac{1}{2}[x + y + z]\bigg[ {(x - y)}^{2} +  {(y - z)}^{2} +  {(z - x)}^{2}\bigg]

\large\underline{\sf{Solution-}}

Consider RHS

\rm \: \dfrac{1}{2}[x + y + z]\bigg[ {(x - y)}^{2} +  {(y - z)}^{2} +  {(z - x)}^{2}\bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[  {x}^{2} +  {y}^{2} - 2xy +  {y}^{2}  +  {z}^{2}  - 2yz +  {z}^{2} +  {x}^{2}  - 2zx  \bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[ 2{x}^{2} +  2{y}^{2} + 2 {z}^{2}  - 2xy - 2yz- 2zx\bigg]

\rm  = \: \dfrac{1}{2} \times 2[x + y + z]\bigg[ {x}^{2} +{y}^{2} + {z}^{2}  - xy - yz- zx\bigg]

\rm  = \: [x + y + z]\bigg[ {x}^{2} +{y}^{2} + {z}^{2}  - xy - yz- zx\bigg]

\rm \:  =  \: {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz

Hence, Proved

Alternative Method

Consider LHS

\rm :\longmapsto\:  \: {x}^{3} +  {y}^{3} +  {z}^{3} - 3xyz

\rm  = \: [x + y + z]\bigg[ {x}^{2} +{y}^{2} + {z}^{2}  - xy - yz- zx\bigg]

On multiply and divide by 2, we get

\rm  = \: \dfrac{1}{2} \times 2[x + y + z]\bigg[ {x}^{2} +{y}^{2} + {z}^{2}  - xy - yz- zx\bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[ 2{x}^{2} +  2{y}^{2} + 2 {z}^{2}  - 2xy - 2yz- 2zx\bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[  {x}^{2}  + {x}^{2} +   {y}^{2}  + {y}^{2} +  {z}^{2}  +  {z}^{2}  - 2xy - 2yz- 2zx\bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[({x}^{2} +{y}^{2} - 2xy) +({y}^{2}  +  {z}^{2}  - 2yz )+ ({z}^{2} +  {x}^{2}  - 2zx)\bigg]

\rm  = \: \dfrac{1}{2}[x + y + z]\bigg[ {(x - y)}^{2} +  {(y - z)}^{2} +  {(z - x)}^{2}\bigg]

Hence, Proved

Additional Information :-

More Identities to know:

• (a + b)² = a² + 2ab + b²

• (a - b)² = a² - 2ab + b²

• a² - b² = (a + b)(a - b)

• (a + b)² = (a - b)² + 4ab

• (a - b)² = (a + b)² - 4ab

• (a + b)² + (a - b)² = 2(a² + b²)

• (a + b)³ = a³ + b³ + 3ab(a + b)

• (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions