Math, asked by Ayaan5971, 5 hours ago

prove that(x^a-b)^a+b (x^b-c) (x^c-a)^c + a = 1​

Answers

Answered by Saby123
12

Solution :

We have to show that [ x^(a-b)]^(a+b) × [ x^(b-c)]^(b+c) × [ x^(c-a)]^(c+a) = 1

x^(a-b)]^(a+b) × [ x^(b-c)]^(b+c) × [ x^(c-a)]^(c+a)

> x^(a-b)(a+b) × x^(b-c)(b+c) × x^(c-a)(c+a)

> x^(a²-b²) × x^(b²-c²) × x^(c²-a²)

> x^(a²-b²+b²-c²+c²-a²)

> x^(a²+b²+c²-a²-b²-c²)

> x^⁰

> 1

Hence Proved

________________________________

Answered by TYKE
9

Appropriate Question :

 \sf Prove  \: that \:  {x}^{(a - b)(a + b)}  \cdot {x}^{(b - c)(b + c)}  \cdot \:  {x}^{(c - a)(c - a)}  = 1

Here, the dot represents the multiplication sign

Solution :

 \sf  {x}^{(a - b)(a + b)}  \cdot {x}^{(b - c)}  \cdot \:  {x}^{(c - a)(c - a)}  = 1

Now using the identity (a - b)(a + b) = a² - b² we get

 \sf {x}^{ ({a}^{2} -  {b}^{2}  )}  \cdot {x}^{(b - c)}  \cdot {x}^{( {c}^{2}  -  {a}^{2}) }  = 1

Now according the Product Law we know that

  \sf{a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

So by using this law we get

 \sf \leadsto {x}^{ {a}^{2} -  {b}^{2} + b² - c² -  {c}^{2}  -  {a}^{2}   }  = 1

 \sf \leadsto {x}^{ \cancel{( {a}^{2}} -   \cancel{{b}^{2} }  +  \cancel{ {b}^{2} } -  \cancel{ {c}^{2}} + \cancel{  {c}^{2} } -   \cancel{a}^{2}  ) }  = 1

We know that anything to the power 0 is 1

So, x⁰ = 1

  \sf \leadsto{x}^{0}  = 1

 \sf \leadsto1 = 1

LHS = RHS

 \green{  \underbrace{  \blue{HENCE, \:  PROVED}}}

Know More :

  • a⁰ = 1

  • a^m = aⁿ → m = n

  • aⁿ = bⁿ → a = b

  • (ab)ⁿ = aⁿbⁿ

  • (a/b)ⁿ = aⁿ/bⁿ

Regards

# BeBrainly

Similar questions