Math, asked by Pandit835353, 7 months ago

prove that x^a(b-c)/x^b(a-c)÷(x^b/x^a)^c=1​

Attachments:

Answers

Answered by Krish76s
1

Answer:

hi

Step-by-step explanation:

free fire ka I'd ka naam kya hai batao

✌✌sacha hai alok doge

Answered by chetanakhairnar2000
0

Answer:  PLEASE BRAINLIEST MY ANSWER

I HOPE IT IS HELPFUL FOR YOU

Step-by-step explanation:

8. Prove that { x^[a(b-c)] / x^[b(a-c)] } / { [ x^b / x^a ]^c } = 1

⇒ LHS = { x^[a(b-c)] / x^[b(a-c)] } / { [ x^b / x^a ]^c }

           = [ x^(ab-ac) / x^(ab-bc) ] / { [x^b / x^a]^c }

                             -------------- [ using identity p^m/p^n = p^(m-n) ]

           = { x^[(ab-ac)-(ab-bc)] } / { [x^(b-a)]^c }

                             -------------- [ using identity (p^m)^n = p^(mn) ]              

           = { x^[ab-ac-ab+bc] } / { x^[c(b-a)] }

           = { x^[bc-ac] } / { [x^(bc-ac)] }

                             -------------- [ using identity p^m/p^n = p^(m-n) ]

           = { x^[(bc-ac)-(bc-ac)] }

           = { x^[bc-ac-bc+ac] }

           = { x^0 }            -------------[ using identity p^0 = 1 ]

           = 1

LHS     =     RHS

∴ { [x^a(b-c)] / [x^b(a-c)] } ÷ { (x^b/x^a)^c } =1​

           

                     

Similar questions