Math, asked by anchalsahay038, 1 month ago

prove that (x^a/x^b)^a+b-c(x^b/x^c)^b+c-a(x^c/x^a)^c+a-b =1​.
pls ans fast

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{a} }{ {x}^{b} } \bigg]}^{a + b - c}}

We know,

\red{ \boxed{ \sf{ \: \frac{ {x}^{m} }{ {x}^{n} }  =  {x}^{m - n}}}}

So, using this identity, we get

\rm \:  =  \:  {\bigg[ {x}^{a - b}  \bigg]}^{a + b - c}

\rm \:  =  \:  {\bigg[x\bigg]}^{(a - b)(a + b - c)}

\rm \:  =  \:  {\bigg[x\bigg]}^{(a - b)(a + b) - (a - b)c}

\rm \:  =  \:  {\bigg[x\bigg]}^{ {a}^{2} -  {b}^{2}  - (a - b)c}

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

Now, Consider

\red{\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{b} }{ {x}^{c} } \bigg]}^{b + c - a}}

\rm \:  =  \:  {\bigg[ {x}^{b - c}  \bigg]}^{b + c- a}

\rm \:  =  \:  {\bigg[x\bigg]}^{(b - c)(b  +  c - a)}

\rm \:  =  \:  {\bigg[x\bigg]}^{(b - c)(b  +  c)- (b - c)a}

\rm \:  =  \:  {\bigg[x\bigg]}^{ {b}^{2} -  {c}^{2}  - (b - c)a}

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

Now, Consider

\red{\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{c} }{ {x}^{a} } \bigg]}^{c + a - b}}

\rm \:  =  \:  {\bigg[ {x}^{c - a}  \bigg]}^{c + a- b}

\rm \:  =  \:  {\bigg[x\bigg]}^{(c - a)(c  +  a - b)}

\rm \:  =  \:  {\bigg[x\bigg]}^{(c - a)(c  +  a)- (c - a)b}

\rm \:  =  \:  {\bigg[x\bigg]}^{ {c}^{2} -  {a}^{2}  - (c - a)b}

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

Now, Consider

\red{\rm :\longmapsto\: {\bigg[\dfrac{ {x}^{a} }{ {x}^{b} } \bigg]}^{a + b - c}{\bigg[\dfrac{ {x}^{b} }{ {x}^{c} } \bigg]}^{b + c - a}{\bigg[\dfrac{ {x}^{c} }{ {x}^{a} } \bigg]}^{c + a - b}}

\rm \:  =  \:  {\bigg[x\bigg]}^{ {a}^{2} -  {b}^{2}  - (a - b)c} \times {\bigg[x\bigg]}^{ {b}^{2} -  {c}^{2}  - (b - c)a} \times {\bigg[x\bigg]}^{ {c}^{2} -  {a}^{2}  - (c - a)b}

\rm \:  =  \:  {\bigg[x\bigg]}^{ {a}^{2} -  {b}^{2} - ac + bc +  {b}^{2}  -  {c}^{2} - ba + ac +  {c}^{2}  -  {a}^{2} - bc + ba}

\rm \:  =  \:  {\bigg[x\bigg]}^{ 0}

\rm \:  =  \: 1

Hence,

\red{\bf :\longmapsto\: {\bigg[\dfrac{ {x}^{a} }{ {x}^{b} } \bigg]}^{a + b - c}{\bigg[\dfrac{ {x}^{b} }{ {x}^{c} } \bigg]}^{b + c - a}{\bigg[\dfrac{ {x}^{c} }{ {x}^{a} } \bigg]}^{c + a - b} = 1}

Similar questions