prove that :(x^a/x^b)^a+b *(x^b/x^c)^b+c* (x^c/x^a)^c+a =1
Answers
Answered by
2
Answer:
» [x^a / x^b]^(a + b) × [x^b / x^c]^(b + c) ×
[x^c / x^a]^(c + a)
= x^(a - b) (a + b) * x^(b - c) (b + c) * x^(c - a) (c + a)
= x^(a² - b²) * x^(b² - c²) * x^(c² - a²)
= x^(a² - b² + b² - c² + c² - a²)
= x⁰
= 1
Hence, proved.
Similar questions