Math, asked by muskanvedi437, 9 months ago

prove that (x^a/x^b)a+b (x^b/x^c) b+c (x^c/x^a) c+a =1 . It's hurry pls ans i Will mark as brainliest

Answers

Answered by lalankumar99395
7

Step-by-step explanation:

We need to prove the gives equation is unity that is 1

LHS=(xa/xb)^1/ab( xb /xc)^1/bc(xc/xa)1/ca

Using laws of exponents

= (xa/xb)1/ab( xb /xc)1/bc(xc/xa)1/ca

= x(a-b)/ab * x^(b-c)/bc * x^(c-a)/ca

= x[(a-b)/ab + (b-c)/bc + (c-a)/ca]

= x[c(a-b)/abc + a(b-c)/abc + b(c-a)/abc ]

= x { [c(a-b)+ a(b-c) + b(c-a) ]/abc }

= x ( ac – bc + ab – ac + bc – ab ] /abc

= x 0/abc

= x0

= 1

= RHS

Hence proved

please mark as BRAINLIEST ANSWER AND FOLLOW ME PLZZZZZZZ PLZZZZZZZ PLZZZZZZZ PLZZZZZZZ PLZZZZZZZ and I the first to answer this question so please mark as brainliest answer

Answered by pulakmath007
1

Answer:

\textcolor{red}{solution}

 {( \frac{ {x}^{a} }{ {x}^{b} }) }^{ \: a + b \: }    \times   {( \frac{ {x}^{b} }{ {x}^{c} }) }^{ \: b + c \: }    \times   {( \frac{ {x}^{c} }{ {x}^{a} }) }^{ \: c+ a \: }

 =   { {x}^{(a - b)} }^{a + b}    \times  \:  { {x}^{(b - c)} }^{b+ c} \:   \times  \: { {x}^{(c \: - a \: )} }^{c + a \: }

 =  {x}^{( {a}^{2} -  {b}^{2}  )}   \times  {x}^{( {b}^{2} -  {c}^{2}  )} \times {x}^{( {c}^{2} -  {a}^{2}  )}

 =  {x}^{( {a}^{2}   -  {b}^{2} +  {b}^{2}   -  {c}^{2} +  {c}^{2} -  {a}^{2}   )}

 =  {x}^{0}

 = 1

Similar questions