Math, asked by KimSomin, 2 months ago

Prove that (x^a/x^b)^c*(x^b/x^c)^a*(x^c/x^a)^b=1​

Answers

Answered by Anonymous
1

Step-by-step explanation:

 (\frac{ {x}^{a} }{ {x}^{b} } ) {}^{c}  \times  ({ \frac{ {x}^{b} }{ {x}^{c} }) }^{a}  \times  ({ \frac{ {x}^{c} }{ {x}^{a} } )}^{b} \\  \\  =  ({x}^{a - b} ) {}^{c}  \times  ( {x}^{b - c} ) {}^{a}  \times  ({x}^{c - a} ) {}^{b}  \\  \\  =  {x}^{ac - bc}  \times  {x}^{ab - ac}  \times  {x}^{bc - ab}  \\  \\  =  {x}^{ac - bc + ab - ac + bc - ab}  \\  \\  =  {x}^{0}   \\  \\  = 1 \:  \:  \:  \: (proved) \\  \\  \\  \\ using \: formula \:  \:   \frac{ {x}^{m} }{ {x}^{n} }   =  {x}^{ m- n}  \\  \\ ( {x}^{m}) {}^{n}  =  {x}^{mn}  \\  \\  {x}^{m}  \times  {x}^{n}  =  {x}^{ m+ n}  \\  \\  {x}^{0}  = 1

Similar questions