Math, asked by debendra123456, 1 year ago

Prove that, [ (x)^(a²) ÷ (x)^(b²) ]^{1/(a+b)} × [ (x)^(b²) ÷ (x)^(c²) ]^{1/(b+c)} × [ (x)^(c²) ÷ (x)^(a²) ]^{1/(c+a)} = 1

Answers

Answered by BloomingBud
11
SOLUTION IS IN THE ATTACHED IMAGE.


LHS = \bigg [ \frac{x ^{ {a}^{2} } }{ {x}^{ {b}^{2} } } \bigg] ^{ \frac{1}{a + b} } × \bigg [ \frac{x ^{ {b}^{2} } }{ {x}^{ {c}^{2} } } \bigg] ^{ \frac{1}{b + c} } × \bigg [ \frac{x ^{ {c}^{2} } }{ {x}^{ {a}^{2} } } \bigg] ^{ \frac{1}{c + a} }

.

=  { \bigg[ (x)^{ a^{2} - b^{2} } \bigg] }^{\frac{1}{a+b}}× { \bigg[ (x)^{ b^{2} - c^{2} } \bigg] }^{\frac{1}{b + c}}× { \bigg[ (x)^{ c^{2} - a^{2} } \bigg] }^{\frac{1}{c + a}}

.

[ \frac {a^{m}}{a^{n}}\: =\: a^{m-n} ]

.

= [(x)^{(a-b) (a+b)}]^{\frac{1}{a+b}} × [(x)^{(b-c) (b+c)}]^{\frac{1}{b+c}} × [(x)^{(c-a) (c+a)}]^{\frac{1}{c+a}}

.

[ \therefore \ {a}^{2} - {b}^{2}} = (a-b) (a+b) ]

.

= \ {(x)}^{a-b} × \ {(x)}^{b-c} × \ {(x)}^{c-a}

.

[ \therefore (a^{m})^{n} = a^{mn} ]

.

= \ {(x)}^{a-b+b-c+c-a}

.

[ \therefore {a}^{m} \times {a}^{n} = {a}^{m+n} ]

.

= \ {x}^{0} = 1

Hence proved


Hope it helps

Attachments:
Answered by Ashi03
15
CHECK OUT THE ATTACHMENT
HOPE IT HELPS ✌
Attachments:

nzkj: hello
Similar questions