prove that (x+y)²-(x-y)²=4xy
Answers
Answered by
4
Answer:
(x+y)
2
−(x−y)
2
=4xy , verified.
Step-by-step explanation:
We have,
(x+y)^2-(x-y)^2=4xy(x+y)
2
−(x−y)
2
=4xy
Verify, (x+y)^2-(x-y)^2=4xy(x+y)
2
−(x−y)
2
=4xy
L.H.S.=(x+y)^2-(x-y)^2=(x+y)
2
−(x−y)
2
Using algebraic identity,
(a+b)^{2}=a^{2}+b^{2}+2ab(a+b)
2
=a
2
+b
2
+2ab and
(a-b)^{2}=a^{2}+b^{2}-2ab(a−b)
2
=a
2
+b
2
−2ab
=(x^{2}+y^{2}+2xy)-(x^{2}+y^{2}-2xy)=(x
2
+y
2
+2xy)−(x
2
+y
2
−2xy)
=x^{2}+y^{2}+2xy-x^{2}-y^{2}+2xy=x
2
+y
2
+2xy−x
2
−y
2
+2xy
=2xy+2xy=2xy+2xy
= 4xy
= R.H.S., verified.
Hence, (x+y)^2-(x-y)^2=4xy(x+y)
2
−(x−y)
2
=4xy , verified.
Similar questions