Prove that (x+y)3 + (y+z)3 +(z+x)3 – 3(x+y)(y+z)(z+x) = 2(x3+y3+z3 -3xyz)
Answers
Answer:
here is it
Step-by-step explanation:
a3 + b3 + c3- 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
if a + b + c = 0; then a3 + b3 + c3- 3abc = 0
or a3 + b3 + c3= 3abc
For the numerator:
(x3 - y3) + (y3 - z3) + (z3 - x3) = 0
so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3
= 3 (x3 - y3) (y3 - z3) (z3 - x3)
again, x3 - y3= (x - y) (x2 + xy + y2)
so, 3 (x3 - y3) (y3 - z3) (z3 - x3)
= 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2)
for the denominator:
(x - y) + (y-z) + (z-x) = 0
so, (x - y)3 + (y - z)3) (z - x)3 = 3 (x - y) (y-z) (z-x)
so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3 / (x - y)3 + (y - z)3) (z - x)3
= 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2) / 3 (x - y) (y-z) (z-x)
= (x2 + xy + y2) (y2 + yz + z2) (z2 + zx + x2)