prove that (x+y)^3+(y+z)^3+(z+x)^3=3(x+y)(y+z)(z+x)
Answers
Answered by
1
Step-by-step explanation:
Let x+y=a, y + z = b and z+x=C
Then,
(x+y)³ + (y+z)³ + (z+x)³ −3(x+y)(y+z) (z + x)
a3 + b³ + c3-3abc
(a+b+c)(a² + b ² + c²-ab-bc-ca)
=[(x+y)+(y+z) + (z + x)][(x + y)² + (y+z)² + (z + x)² = (x + y) (y+z)-(y+z)(z + x)-(z+x)(x+y)]
= 2(x+y+z)(x² + y² + 2xy + y² +z²+2yz+z²+x²+2xz-(xy + x2 + y² +yz)
-(yz + xy +z²+xz)-(xz+yz + x² + xy)]
= 2(x+y+z)(x² + y² + 2xy + y² +z²+2yz + z² + x² + 2xz-xy-xz-y²-yz-vz-xy-z²-xz-xz-vz-x²-xy)
= 2(x+y+z)(x² + y² + z² - xy-vz-zx)
2(x³+y³+23-3xyz)
Similar questions
Math,
1 month ago
Science,
1 month ago
Science,
1 month ago
English,
2 months ago
Computer Science,
2 months ago
Computer Science,
10 months ago