Math, asked by ashwinidoijod13, 1 year ago

Prove that (X+y)cube + (y+z) cube+(z+X) cube- 3(X+y)(y+z)(z+X)=2(xcube+ycube+zcube-3xyz)

Answers

Answered by Anonymous
100

 \huge \boxed{ \mathbb{ \ulcorner ANSWER: \urcorner}}


\boxed{See  \:  the \:  attachment \:  for \:  your \:  answer.}


 \huge \boxed{ \mathbb{ALGEBRAIC \:  \:  IDENTITIES}}



 \huge \bf \underline{ \mathbb{LHS = RHS .}}



✔✔ Hence, it is proved ✅✅.

____________________________________




 \huge \boxed{ \mathbb{THANKS}}




 \huge \bf{ \# \mathbb{B}e \mathbb{B}rainly.}
Attachments:

Anonymous: :f:
Answered by Anonymous
61
Heya!!

------------------------------------

Solve LHS:

(x+y) ^3 + (y+z) ^3 +(z+x) ^3 - 3(x+y)(y+z)(x+z)

= [x^3 +y^3 + 3x^2y + 3xy^2] + [y^3+z^3 + 3y^2z + 3yz^2] + [z^3+ x^3 + 3z^2x + 3zx^2] - 3[(xy+xz+y^2+yz) (x+z)]

= [x^3+x^3 +y^3+y^3+ z^3+ z^3] + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3z^2x + 3zx^2 - 3x^2y - 3xyz - 3x^2z - 3xz^2- 3y^2z - 3y^2x - 3xyz - 3yz^2

= (2x^3+ 2y^3+ 2z^3 - 6xyz)

= 2(x^3 +y^3 +z^3 - 2xyz)

Hope it helps uh!!
Similar questions