Prove that (x+y') (x+z') = (x+y'+z) (x+y'+z) ( x+y+z) SOLUTION FOR THIS?
Answers
Answered by
0
x'y'z + yz + xy =
x'y'z + yz + xy(z + z') =
x'y'z + yz + xyz + xyz' =
(x'y' + y + xy)z + xyz' =
(x'y' + y[x + x'] + xy)z + xyz' =
(x'y' + xy + x'y + xy)z + xyz' =
(x'[y'+y] + xy)z + xyz' =
(x' + xy)z + xyz' =
x'z + xyz + xyz' =
x'z + xy(z +z') =
x'z + xy
hope it will help u :)
x'y'z + yz + xy(z + z') =
x'y'z + yz + xyz + xyz' =
(x'y' + y + xy)z + xyz' =
(x'y' + y[x + x'] + xy)z + xyz' =
(x'y' + xy + x'y + xy)z + xyz' =
(x'[y'+y] + xy)z + xyz' =
(x' + xy)z + xyz' =
x'z + xyz + xyz' =
x'z + xy(z +z') =
x'z + xy
hope it will help u :)
Answered by
0
This is yur answer hope it helps!!!
Attachments:
Similar questions
Math,
8 months ago
Biology,
8 months ago
Computer Science,
8 months ago
Math,
1 year ago
Math,
1 year ago