Math, asked by yadav5574, 1 year ago

prove that x+y+z=0,x³+y³+z³=3xyz

Answers

Answered by Anonymous
4
Hey !!! ^_^

Here is your answer

⬇️⬇️⬇️⬇️⬇️⬇️⬇️

x + y + z = 0 \\ x + y = - z

Cubing both the side
 {(x + y)}^{3} = { (- z)}^{3} \\ \\ {x}^{3} + {y}^{3} + 3xy(x + y) = { (- z)}^{3} \\ \\ as \: we \: solve \: that \: \\ x + y = - z \: so \\ \\ {(x)}^{3} + {(y)}^{3} + 3xy( - z) = {( -z )}^{3} \\ \\ {x}^{3} + {y}^{3} - 3xyz \: + {z}^{3} = 0 \\ \\ {x}^{3} + {y}^{3} + {z}^{3}  = 3xyz \: \: proved

I HOPE IT WILL HELP YOU

Thank you

☺️
Answered by TRISHNADEVI
6
We know that,

x {}^{3} + y {}^{3} + z {}^{3} - 3xyz = (x + y + z)(x {}^{2} + y {}^{2} + z {}^{2} - xy - yz - zx)

Given,

x + y + z = 0

So,

x {}^{3} + y {}^{ 3} + z {}^{3} - 3xyz = (x + y + z)(x {}^{2} + y {}^{2} z {}^{2} - xy - yz - zx) \\ = > x {}^{3} + y {}^{3} + z {}^{3} - 3 xyz = 0 \times (x {}^{2} + y {}^{2} + z {}^{2} - xy - yz - zx) \\ = > x {}^{3} + y {}^{3} + z {}^{3} - 3xyz = 0 \\ = > x {}^{3} + y {}^{3} + z {}^{3} = 3xyz

Hence Proved.

Swarup1998: Y2 z2 .. an addition sign is missing
Similar questions