prove that x³-1=(x-1)(x²+x+1).
Hey guys please answer this question........
Answers
Answered by
0
X² + x + 1 = 0
⇒ x² + x + 1 -x = 0 - x
⇒x² + 1 = -x
⇒(x² + 1)/x = -x/x
⇒ x + 1/x = -1
Using a³+b³ = (a+b)³ - 3ab(a+b)
x³ + 1/x³ = (x+1/x)³ - 3×x×1/x×(x+1/x)
Thus (x³ + 1/x³)³ = [(x+1/x)³ - 3×x×1/x×(x+1/x)]³
=[ (-1)³ - 3×(x×1/x)×(-1) ]³
=[ (-1)³ - 3×(1)×(-1) ]³
=[ -1 -3×(-1) ]³
=[ -1 + 3 ]³
=[2]³
=8
Answered by
2
Answer:
LHS
x³ -1
= x³ -1³
= (x -1)(x² + 1² +x.1)
= (x -1)(x² +x +1)
formula
' a³ - b³ = (a - b)(a² + b ² +ab)
Similar questions