Math, asked by rkcomp31, 4 months ago

prove that x³+y³
=(x+y)(x²+y²-xy).

Answers

Answered by Anonymous
1

(x+y)³ = x³ + 3x²y + 3xy² + y³

x³ + y³ = (x+y)³ – 3x²y - 3xy²

= (x + y)³ – 3xy(x+y)

= (x + y)(x+y)² – 3xy(x+y)

= (x + y)[(x+y)² – 3xy]

= (x + y)(x² + 2xy + y² – 3xy)

x³ + y³ = (x + y)(x² - xy + y²)

✓PROVED✓


rkcomp31: how come ,check your solution
Anonymous: Check it now
Anonymous: Mark it brainliest if u are satisfied with answer
rkcomp31: ok thanks for understanding me ,Y R very nice person give me time to screen ,I hope U will get Brainiest
rkcomp31: Ok Congs for getting brainliest ,Please keep it up,All the best from my side I m ready hwlp all times.
Answered by DynamicCrystal
3

AnsweR :

 \sf Prove  \: that :   {x}^{3} +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)

 \sf \: L.H.S =  {x}^{3}  +  {y}^{3}

 \sf \: R.H.S = (x + y)( {x}^{2}  +  {y}^{2}  - xy) \\  \\  \sf = x( {x}^{2}  +  {y}^{2}  - xy) + y( {x}^{2}  +  {y}^{2}  - xy) \\  \\  \sf =  {x}^{3}  + \cancel{ x {y}^{2} } -   \cancel{{x}^{2} y} +   \cancel{{x}^{2} y} +  {y}^{3}  -  \cancel{x {y}^{2} } \\  \\  \sf =  {x}^{3}  +  {y}^{3}

 \sf \bold{ L.H.S = R.H.S}

 \sf{x}^{3} +  {y}^{3}  = (x + y)( {x}^{2}  +  {y}^{2}  - xy)

Hence Proved !!

Similar questions