Prove that x4 - y4 = b2 - a2, if a cot θ + b cosecθ = x2 and b cot θ + a cosec θ = y2
solve fast :|
Answers
Answered by
5
We have x2 + y2 = (a sin θ + b cos θ)2 + (a cos θ – b sin θ)2
= (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) + (a2cos2 θ + b2 sin2 θ - 2ab sin θ cos θ)
= a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ - 2ab sin θ cos θ
= a2 sin2 θ + b2 cos2 θ + a2 cos2 θ + b2 sin2 θ
= a2 sin2 θ + a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 (1) + b2 (1); [since, sin2 θ + cos2 θ = 1]
= a2 + b2
Therefore, x2 + y2 = a2 + b2
which is the required θ-eliminate.
= (a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ) + (a2cos2 θ + b2 sin2 θ - 2ab sin θ cos θ)
= a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ + a2 cos2 θ + b2 sin2 θ - 2ab sin θ cos θ
= a2 sin2 θ + b2 cos2 θ + a2 cos2 θ + b2 sin2 θ
= a2 sin2 θ + a2 cos2 θ + b2 sin2 θ + b2 cos2 θ
= a2 (sin2 θ + cos2 θ) + b2 (sin2 θ + cos2 θ)
= a2 (1) + b2 (1); [since, sin2 θ + cos2 θ = 1]
= a2 + b2
Therefore, x2 + y2 = a2 + b2
which is the required θ-eliminate.
Answered by
3
FjdjejfjgjfkskcjgjgjfkdkfjgjbjfkeifjvjgirkcjghrifjgjtjNinddjvjtjcjvfu,
Similar questions