Math, asked by triconeinternat2872, 11 months ago

Prove that : ( xa2 / xb2 ) 1 / a +



b. ( xb2 / xc2 ) 1 / b +



c. ( xc2 / xa2 ) 1 / c + a = 1

Answers

Answered by Agastya0606
21

Given: The correct terms are:

(x^a^2 / x^b^2)^1/(a+ b) x (x^b^2 / x^c^2)^1/(b+c) × (x^c^2 / x^a^2 )^1/(c+a) = 1

To find: Prove LHS = RHS

Solution:

  • Now we have given the terms:

  (x^a^2 / x^b^2)^1/(a+ b) × (x^b^2 / x^c^2)^1/(b+c) × (x^c^2 / x^a^2 )^1/(c+a) = 1

  • Taking LHS, we have:

  (x^a^2 / x^b^2)^1/(a+ b) × (x^b^2 / x^c^2)^1/(b+c) × (x^c^2 / x^a^2 )^1/(c+a)

  • We have the formula:

              a^m / a^n = a^(m-n)

  • Applying this, we get:

              (x^(a^2-b^2))^1/(a+ b) × (x^(b^2-c^2))^1/(b+c) × (x^(c^2-a^2) )^1/(c+a)

  • Now we have the formula:

              (a-b)(a+b) = a^2 - b^2

  • Applying this, we get:

              ( x^((a-b)(a+b)/(a+ b)) ) × (x^(b-c)(b+c)/(b+c)) × (x^(c-a)(c+a)/(c+a) )

  • Now cancelling the terms, we get:

              x^(a-b) × x^(b-c) × x^(c-a)

  • Now using the formula:

              a^m x a^n = a^m+n

              x^(a-b+b-c+c-a) = x^0

  • Anything raised to power 0 is always 1, so:

              x^0 = 1 .......................RHS

  • Hence proved

Answer:

So we have proved that:

(x^a^2 / x^b^2)^1/(a+ b) x (x^b^2 / x^c^2)^1/(b+c) × (x^c^2 / x^a^2 )^1/(c+a) = 1

Answered by mahisarathe93
2

Step-by-step explanation:

it would be better to understand in a written paper

Similar questions