Math, asked by puklitdhamija3017, 26 days ago

Prove that xloga to base b = a log x to base b

Answers

Answered by mitalipatidar
0

Answer:

Answer and explanation:

To prove : \log_{ab}x=\frac{(\log_a x)(\log_b x)}{\log_a x+\log_b x}log

ab

x=

log

a

x+log

b

x

(log

a

x)(log

b

x)

Proof :

Taking RHS,

\frac{(\log_a x)(\log_b x)}{\log_a x+\log_b x}

log

a

x+log

b

x

(log

a

x)(log

b

x)

=\frac{(\log_a x)(\log_b x)}{\frac{1}{\log_x a}+\frac{1}{\log_x b}}=

log

x

a

1

+

log

x

b

1

(log

a

x)(log

b

x)

=\frac{(\log_a x)(\log_b x)}{\frac{\log_x a+\log_x b}{(\log_x a)(\log_x b)}}=

(log

x

a)(log

x

b)

log

x

a+log

x

b

(log

a

x)(log

b

x)

=\frac{(\log_a x)(\log_b x)(\log_x a)(\log_x b)}{\log_x a+\log_x b}=

log

x

a+log

x

b

(log

a

x)(log

b

x)(log

x

a)(log

x

b)

=\frac{1}{\log_x a+\log_x b}=

log

x

a+log

x

b

1

=\frac{1}{\log_x (ab)}=

log

x

(ab)

1

=\log_{ab}x=log

ab

x

= LHS

Hence proved.

Similar questions